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The linear stability of the Stokes layers generated between a pair of synchronously
oscillating parallel plates is investigated. The disturbance equations were studied using
Floquet theory and pseudospectral numerical methods used to solve the resulting
system. Neutral curves for an extensive range of plate separations were obtained
and when the plate separation is large compared to the Stokes layer thickness the
linear stability properties of the Stokes layer in a semi-infinite fluid were recovered.
A detailed analysis of the damping rates of disturbances to the basic flow provides a
plausible explanation of why several previous studies of the problem have failed to
detect any linear instability of the flow.

To compare more faithfully with experimental work the techniques used for the
channel problem were modified to allow the determination of neutral curves for
axisymmetric disturbances to purely oscillatory flow in a circular pipe. Critical
Reynolds numbers for the pipe flow tended to be smaller than their counterparts for
the channel case but the smallest critical value was still almost twice the experimentally
reported result.

1. Introduction
The flow generated in a semi-infinite layer of a viscous fluid when the bounding

infinite flat plate oscillates in its own plane is generally referred to as a Stokes layer
(von Kerczek & Davis 1974). This flow is the prototype unsteady viscous boundary
layer and some form of Stokes layer occurs on the bounding surfaces of many
high-frequency oscillatory flows. In particular, purely oscillatory motion in pipes and
channels can be decomposed into an inviscid flow away from the walls with a Stokes
layer adjacent to the boundaries, provided the frequency of oscillation is sufficiently
large. Flows meeting this condition occur in a variety of industrial and physiological
situations – some examples are given in Hale, McDonald & Womersley (1955), Ku
(1997), Selverov & Stone (2001) and Suresh & Homsy (2004). It is undeniable that
the stability properties of Stokes layers are of both practical and theoretical interest.

From a theoretical point of view the planar Stokes layer is a paradigm for purely
oscillatory parallel flows and several attempts have been made to predict its linear
stability properties. Stokes layers are characterized by three dimensional quantities:
the frequency of the oscillations, ω, the amplitude of the fluid velocity, U0 (either at
the wall or within the inviscid core) and the kinematic viscosity, ν, of the fluid. These
quantities combine to form the Reynolds number

R = U0/
√

2νω,
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which is the main parameter determining the stability of the Stokes layer. Experimental
work has clearly demonstrated that the flow is unstable at sufficiently large Reynolds
numbers (see, for example, Akhavan, Kamm & Shapiro (1991a) for a summary of
some relevant work) but the wide variation in reported results means that there is
no agreed definitive value of R characterizing the onset of instability. Depending
on the experimental apparatus used, values of R ranging from 140 to 270 have
been suggested for the stage at which the basic laminar Stokes layer loses stability.
In contrast to the experimental evidence, the early theoretical approaches failed to
detect any linear instability at all. Indeed, for high-frequency oscillatory flow in a
channel, the results of von Kerczek & Davis (1974) showed that for R up to 400 the
least-stable disturbance mode actually becomes more stable as R increases. Although
they examined a slightly different problem, the calculations of Akhavan, Kamm &
Shapiro (1991b) essentially confirmed the results of von Kerczek & Davis, at least as
far as the linear stability of the flow is concerned. Moreover, for the case of a Stokes
layer bounding a semi-infinite layer of fluid, the study of Hall (1978) could not detect
any linear instability for R < 160.

All the theoretical investigations described above are rational in the sense that no
restrictions were imposed on the temporal dependence of the perturbations beyond
the assumption that they satisfy the normal linear stability equations supplemented
by appropriate boundary conditions. In contrast, some studies of the stability of
Stokes layers at finite Reynolds numbers have used ad-hoc conditions which assert
that the disturbance should change much more rapidly than the underlying flow. This
constraint leads to an easier theoretical task but such ‘quasi-steady’ formulations can
give rise to several possible definitions of instability. Furthermore, von Kerczek &
Davis (1974) have argued that these quasi-steady approaches are flawed, and to date
there has been no rigorous mathematical justification for the approximations made.
The assumptions of the finite Reynolds number, ‘quasi-steady’ approach to the
linear instability of Stokes layers are further undermined by the results of Akhavan
et al. (1991b). By numerically solving the linear initial value problem governing the
evolution of disturbances in oscillatory flow in a channel, Akhavan et al. (1991b)
showed that there was no rapid growth phase for disturbances, even at Reynolds
numbers where turbulence in the basic flow had been reported. On the other
hand, rational quasi-steady stability calculations for purely oscillatory plane flows
are possible as the Reynolds number tends to infinity (Cowley 1987; de Souza 1998).
For the case of a Stokes layer bounding a semi-infinite flow Hall (2003) has used
a quasi-steady analysis to demonstate the existence of disturbances with periodic
growth rates, provided the disturbance wavenumber is above a certain critical value.
However our interest is in the initial instability of the basic flow, which occurs at a
finite Reynolds number, and consequently only stability calculations based on Floquet
theory, as in von Kerczek & Davis (1974) or Hall (1978), or initial value problems
(Akhavan et al. 1991b) will be considered here.

The most recent work on the linear stability of plane Stokes layers appears to
be that of Blennerhassett & Bassom (2002), hereafter referred to as BB. Their
calculations followed the method detailed by Hall (1978) who showed that a semi-
analytical solution of the governing equations was possible. Hall’s method leads to
the computational problem of locating the zeros of a (formally infinite) determinant
as a function of the disturbance growth rate. As the size of the finite-dimensional
truncation of the determinant grew with increasing R, the computational resources
available at the time meant that Hall (1978) was not able to take his work beyond
R =160 and hence was unable to find any evidence of instability. But BB, aided by
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greater computational resources and some refined numerical methods, were able to
locate the linear stability neutral curve. In particular they identified a critical Reynolds
number of approximately 708 for the oscillatory boundary layer on an infinite flat
plate in a semi-infinite layer of fluid. Nevertheless computational constraints could
not be avoided altogether so that BB were unable to investigate some interesting
aspects of the stability of the flow. In particular their results were inconclusive
regarding the fate of the instability modes as R → ∞. The subsequent study by Hall
(2003) concluded that the Stokes layer reverts to being linearly stable in the formal
high-Reynolds-number limit.

Given the general expectation that the stability properties of a Stokes layer in
a wide channel should approximate those in a semi-infinite layer (von Kerczek &
Davis 1974) there is clear potential conflict between the linear instability results of
BB (for large enough R) and the increasing stability predictions of von Kerczek &
Davis (1974) described earlier. In an attempt to resolve these contradictions, while
simultaneously providing an independent check of the results in BB, the linear stability
of high-frequency oscillatory flow in a finite-width channel is examined in this paper.
The semi-analytical technique of Hall (1978) used by BB does not generalize easily to
oscillatory flow in a finite-width channel and so a purely numerical method is used
to solve the equations obtained from a Floquet decomposition of the perturbations to
the basic flow. Thus the stability results obtained using this approach are completely
independent of the assumptions underlying the calculations in BB. The main finding
is that for R less than about 400 the results to be given here agree qualitatively with
those of von Kerczek & Davis (1974), who examined a slightly different basic flow
from that considered here. Moreover, at larger values of R, the present results agree
quantitatively with those in BB, provided the channel width is large enough.

The Stokes layer thickness,
√

2ν/ω, provides a characteristic length scale for the
flow, so that if the dimensional channel width is 2d then the scaled channel half-width
parameter is h ≡ d/

√
2ν/ω. Our results show that oscillatory flow in a channel has

essentially the same critical conditions for instability as the semi-infinite Stokes layer
flow provided that h is greater than about 14. We note in passing that Akhavan et al.
(1991b) considered a flow with h = 10 and von Kerczek & Davis (1974) effectively
took h = 8; both these investigations chose channel widths which were hoped to be
sufficiently large to provide very good approximations to the semi-infinite Stokes layer.
Given the way that the flow in this layer decays exponentially with distance from the
bounding plate it would seem that h = 8 would be ample for the purposes required.
It is of some surprise that both Akhavan et al. (1991b) and von Kerczek & Davis
(1974) would have been unable to draw detailed quantitative conclusions regarding
the stability of a semi-infinite Stokes layer.

Much experimental work conducted to assess the stability of plane Stokes layers is,
in practice, actually carried out in circular pipes (examples include Hino, Sawamoto &
Takasu 1976; Clamen & Minton 1977; Eckmann & Grotberg 1991) rather than chan-
nels. Practically, it is difficult to generate a flat Stokes layer but rather less complicated
to obtain accurate oscillatory flows in pipes. Consequently, in order to ease the
comparison of our theoretical predictions of instability with available experimental
results, the stability of oscillatory flow in a pipe is also considered here. The
calculations for the pipe are based on a simple extension of the techniques used
for two-dimensional disturbances in a channel and only axisymmetric disturbances
to the pipe flow are examined. For a sufficiently large pipe radius the results of BB
are again retrieved, but when the (non-dimensional) pipe radius is about 10 there
is a minimum, of approximately 570, in the critical Reynolds number. While this
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predicted critical Reynolds number is less than that obtained in BB for the plane
semi-infinite layer, it is still much larger than the experimentally observed value.

The remainder of this work is organized as follows. The governing linear stability
equations are derived in § 2 where the numerical methods are also discussed. Detailed
results for the channel flow are described in § 3 while the extension to the stability of
axisymmetric disturbances to oscillatory flow in a circular pipe is considered in § 4.
The paper concludes with some discussion of practical implications of our results.

2. Formulation and numerical methods
Consider the motion induced in a Newtonian fluid by synchronously oscillating

two infinite parallel plates, a distance 2d apart, with the velocity U0 cos ωt . If each
plate oscillates in its own plane and there are no disturbances, a uni-directional flow
with the fluid velocity parallel to the plates is generated. A dimensionless form for
this basic flow is obtained if all lengths are scaled on

√
2ν/ω, all velocity components

on U0 and the non-dimensional time τ = ωt is introduced. If the movement of the
plates is in the x-direction, with the y-direction normal to the bounding surfaces, the
undisturbed basic flow takes the form

u = UB(y, τ ) = Re

{
cosh((1 + i)y)

cosh((1 + i)h)
eiτ

}
= u1(y)eiτ + u−1(y)e−iτ , v = w = 0, (2.1)

where the velocity vector u = (u, v, w) has components corresponding to the coordi-
nates (x, y, z). The half-width of the channel is h = d

√
ω/2ν, so that for high-frequency

oscillations h measures the separation of the plates in terms of the thickness of the
Stokes layers formed at the channel walls. We note that for h greater than about
2π the vorticity generated by the movement of the walls is unable to diffuse to the
centre of the channel and the basic flow is then effectively zero around y = 0. Thus, as
we are primarily interested in the linear stability of high-frequency oscillatory flows
which have Stokes layers bounding an essentially inviscid core flow, we only consider
values of h greater than about 5.

The linear stability of the basic flow (2.1) is found by considering a disturbed flow
in the form

(u, v, w) = (UB, 0, 0) + ε

(
∂Ψ

∂y
, −∂Ψ

∂x
, 0

)
, (2.2)

where ε � 1 and Ψ denotes the stream function of a two-dimensional disturbance.
As Squire’s theorem has been extended to unsteady flows (Conrad & Criminale
1965; von Kerczek & Davis 1974) the above perturbation is sufficient to locate the
critical conditions for linear instability. The disturbance stream function is further
decomposed to expose explicitly any exponential growth with time by seeking Floquet
solutions in the form

Ψ = eµτeiaxψ(y, τ ) + complex conjugate, (2.3)

where ψ(y, τ ) is taken to be 2π-periodic in τ with any exponential growth or decay
of Ψ incorporated in µ. With this form for the velocity field the linearized equation
for ψ is then

∂

∂τ

(
∂2

∂y2
− a2

)
ψ =

{
1

2

(
∂2

∂y2
− a2

)
− µ − iaRUB

}(
∂2

∂y2
− a2

)
ψ + iaRUByyψ, (2.4)

subject to

ψ = ψy = 0 on y = ±h. (2.5)
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As in BB the wavenumber a is real and the growth rate µ is complex, while the sym-
metries of the equation allow all solutions to be obtained by restricting the imaginary
part of µ to the interval µi ∈ [0, 1

2
]. The unknown function ψ was decomposed into

harmonics

ψ =

∞∑
n=−∞

ψn(y)einτ ,

so that equating coefficients of the harmonics in (2.4) results in the infinite system of
ordinary differential equations(

∂2

∂y2
− a2 − 2µ − 2in

)
ζn = 2iaR[(ζn−1 − 2iψn−1)u1 + (ζn+1 + 2iψn+1)u−1], (2.6a)(

∂2

∂y2
− a2

)
ψn = ζn (2.6b)

where the spatial derivatives of the basic flow have been simplified using the
relationship that u1yy = 2iu1 and ζn is just an abbreviation for the Laplacian of
ψn. Analogous systems have been used by Hall (1978) and BB.

The numerical solution of the system (2.6) was obtained using the pseudospectral
techniques described by Fornberg (1996) and Trefethen (2000). Each differential
operator appearing in the governing equations was replaced by its pseudospectral
matrix approximation, with each ψn(y) being represented by a vector ψn of its
function values on a Chebyshev mesh on the interval −h � y � h. Thus a discrete
approximation to the equations (2.6) can be written as

−iaRM̃ψn+1 + (L−1V − inI)ψn − iaRMψn−1 = µψn, (2.7)

for each integer n. Here I is the appropriately sized identity matrix and L, V and M
are pseudospectral differentiation matrices representing the continuous operators:

∂2
y − a2 → L,

(
∂4

y − 2a2∂2
y + a4

)
/2 → V, M = L−1u1(L − 2iI). (2.8)

Finally, M̃ denotes the complex conjugate of M and, allowing for an obvious abuse
of notation, u1 in (2.8) denotes the square matrix with the mesh values of u1(y) down
the diagonal.

The boundary condition requiring no flow through the channel walls was
implemented by omitting the first and last equation, for each n, from (2.7) while
the no-slip condition, ψny(±h) = 0, was enforced using the procedure described by
Trefethen (2000). This method is based on the observation that the kinematic condition
ψn(±h) = 0 requires that ψn has the form (h2 − y2)gn(y), so that the no-slip condition
can then be imposed by demanding gn(±h) = 0. A transformation from ψn to gn and
then back to ψn is built into the differentiation matrices (Trefethen 2000, chapter 14),
so that both boundary conditions at y = ±h can be imposed by dropping just one
equation at each boundary. Further, this no-slip condition was not used in all spectral
differentiation matrices, but was incorporated into the pseudo-spectral approximation
to ∂4

y , as suggested by Trefethen (2000), and used previously elsewhere (Fornberg
1996). Thus, if the domain [−h, h] is divided into 2K subintervals, equation (2.7)
represents 2K − 1 algebraic equations for the values of ψn at the internal mesh
points. As the basic flow is an even function of y and as there are only even-order
differential operators in the governing equation (2.4), the solution set for ψn(y) can
be decomposed into functions even in y and functions which are odd in y. When this
symmetry is applied to the discrete variable ψn, we find that the odd modes require
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only K − 1 unknowns and the solutions even in y need only K function values. A
finite system of algebraic equations was obtained by truncating the Fourier series for
ψ(y, τ ) and setting ψn = 0 for |n| >N , where N was typically two to three hundred
when locating the neutral conditions. With the vector Φ defined by

ΦT =
(
ψT

N ψT
N−1 . . .ψT

0 . . .ψT
−N

)
(2.9)

the system (2.7) becomes the eigenvalue problem

AΦ = µΦ (2.10)

where A is a sparse, block diagonal matrix with (2N + 1)(K − 1) (odd modes) or
(2N + 1)K (even modes) rows and columns. The (L−1V − inI) blocks appear along

the diagonal of A, with the −iaRM blocks above the diagonal and the −iaRM̃ blocks
below it.

The eigenvalues µ and eigenvectors Φ of the discrete system (2.10) were found using
the sparse matrix eigenvalue routines in Matlab. A range of checks were applied to
the results of these calculations to ensure that the solutions were independent of
the parameters N and K controlling the discrete approximation to the underlying
continuous system. For Reynolds numbers in the range 500 to 1000 values for µ

accurate to more than five significant figures could easily be obtained using K ≈ 50.
Progressively increasing K rapidly increases the number of significant figures in the
eigenvalues obtained, as is expected with a spectral approximation scheme. At very
large values of R and n, say R ≈ 3000 and n ≈ 300, plots of the eigenfunctions ψn as
functions of y sometimes appeared a little ragged for K ≈ 50. However, increasing the
value of K only made tiny changes to the eigenvalue while resolving the oscillations
in the eigenfunctions with large n. The concentration of points in the Chebyshev mesh
near y = ±h allowed accurate resolution of any wall layers, while leaving sufficient
density of points just outside the basic Stokes layer where the eigenfunctions assumed
their largest size. Graphs showing the structure of some of the larger eigenfunctions
ψn(y) at R =700 with a = 0.3 and h= 16 are shown later, where the properties of
the ψn(y) are also discussed more fully. Most of the results presented below were
obtained using K = 48.

The number of harmonics N retained in the Fourier representation of ψ(y, τ )
had a very strong influence on the accuracy of the eigenvalue µ associated with the
unstable disturbance modes. With N too small the real part of the eigenvalue µr was
overestimated; this behaviour was reported by Hall (1978) and also noted by BB.
In fact the dependence of µ on N observed in this work was practically identical to
that detailed in BB, and so will not be discussed further. However, the routines used
within Matlab allowed checks on the accuracy of µ (additional to those undertaken in
BB) to be easily performed. Given an eigenvalue γ , the symmetries in the governing
equations (2.4) show that µ = γ +ik, for any integer k, is also an eigenvalue. If too few
harmonics were used then this property of the exact eigenvalues was not accurately
replicated by the eigenvalues found from the Matlab routines applied to the discrete
system (2.10). For values of R from zero to just above the neutral curve, it was found
empirically that provided N was greater than approximately 0.8aR the value of µ

was accurate to at least five significant figures and independent of N . This is again
similar to the results of checks described in BB.

The determination of the eigenvector Φ became problematic when N exceeded
about 120. The exponential decay of |ψn| with increasing |n| caused the size of the
harmonics in the tail of the Fourier series to fall below the built-in convergence
tolerances of the Matlab routines, and hence produce noise, around a mean value of
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about 10−16, in the vectors ψn with |n| close to N . This difficulty was overcome by
redefining Φ as

ΦT =
(
λ−NψT

N λ−N+1ψT
N−1 . . .ψT

0 . . . λ−NψT
−N

)
(2.11)

so that with λ> 1 some of the exponential decay of the Fourier coefficients is
automatically included and the size of the rescaled ψn will not decrease as rapidly with
increasing |n|. This change in the definition of Φ induces a similarity transformation
of the matrix A appearing in (2.10) and hence does not alter the eigenvalues of the
system. The values of λ needed to absorb the decay of the harmonics were generally
in the range 1.02 < λ< 1.1, depending on the value of N and the parameters a and
R, and successful computation of eigenvectors was obtained, even when the size of
the unscaled ψ±N of (2.9) was O(10−30).

A final check on the internal self-consistency of the numerical procedures was
provided by verifying that the solution obtained from (2.10), which is essentially a
problem in the frequency domain, actually satisfied the original governing equation
(2.4) in the time domain. Fast Fourier transform routines were used to reconstruct the
values of ψ and ψτ at points (yk, τn), where the yk are the points in the Chebyshev
mesh on 0< y < h and τn = 2nπ/(2N + 1) with 0 � n � 2N . Spectral differentiation
matrices were again used to approximate the spatial derivatives in (2.4). As the
derivation of the eigenvalue problem (2.10) involved the application of the inverse of
a Laplacian operator, and the check of the governing equation did not, there is some
degree of independence in the verification of the spatial derivatives. When this check
was carried out for parameter values close to the neutral curve, the maximum error in
the governing equation was always a factor of O(10−7) smaller than the maximum of
the viscous terms in the equation, with this maximum error occurring only for a few
mesh points close to the wall. Over most of the flow domain the error was smaller
than the maximum error by at least another five orders of magnitude.

The procedures described above cover the internal consistency of the numerical
approximations used to obtain the stability properties of the basic flow. Further
verification of our results was provided by comparison with known results for special
limits of the governing equations and previously published data; this is discussed in
the next section.

3. Results
At small Reynolds numbers an analytical solution of the governing equations (2.4)

can be found in the form

ψn ∼ Rn(ψn0 + R2ψn2 + · · ·) with µ ∼ µ0 + R2µ2 + · · · (3.1)

(Dolph & Lewis 1958) where the eigenvalue µ0 comes from the solution of the
transcendental equation

(γ tan γ h + a tanh ah)(γ tanh ah − a tan γ h) = 0 where γ 2 = −a2 − 2µ. (3.2)

There is an infinite family of real eigenvalues µe
0j corresponding to the even

eigenfunctions

ψ00 = φe
0j (y) =

cosh ay

cosh ah
− cos αey

cos αeh
, αe ≡

√
−a2 − 2µe

0j ,

and an analogously defined family of odd eigenfunctions ψ00 = φo
0j (y) with real

eigenvalues µo
0j . The µe

0j values arise from the zeros of the first factor in (3.2) and the
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R = 0.1 R = 570 R = 750

h even odd even odd even odd

8 −0.08833 −0.18181 −0.54130 −0.94410
16 −0.05249 −0.07339 −0.06572 −0.11620 −0.06695 −0.11951

Table 1. Values of µ for the least damped even and odd modes for a = 0.3 and various
values of R and h. Note that for the indicated parameter values µ is purely real.

µo
0j from the zeros of the second factor. At R = 0 the values for µ obtained by the

numerical method described in § 2 agreed with the Dolph–Lewis eigenvalues µe
0j or

µo
0j to more than ten figures for the cases h equal to 1, 8 and 16 with a wavenumber

of 0.3 or 0.4; the first eigenvalue was checked in all cases with sporadic checks made
on modes up to the tenth.

The results of von Kerczek & Davis (1974) for Reynolds numbers up to 400 (in our
scaling) showed that their principal Floquet exponent was always real and became
more negative as R increased from zero, indicating that the basic flow becomes more
stable with increasing R. For the basic flow considered here, analogous results were
obtained for the µ with largest real part over the Reynolds number range given in
table 1. These damping rates of the perturbations for the least stable even and odd
perturbations, for both values of the channel half-width, clearly agree with the trend
found by von Kerczek & Davis (1974). The above results are consistent qualitatively
with the calculations reported by Akhavan et al. (1991b) for the case of h = 10. Their
direct integration in time of (2.4), treated as an initial value problem, showed that all
disturbances decayed to zero for Reynolds numbers up to 500. After some possible
initial growth, due to the effects of non-normality of the operators (Trefethen 1997),
it is expected that the solution of the linear system (2.4) would tend to a multiple
of the least damped eigenmode of the system as time increases. As slowly decaying
solutions were found for R up to 500, the initial value calculations of Akhavan
et al. (1991b) indirectly confirm the presence of weakly damped eigenmodes for this
range of R. Further examination of their results indicates that the main disturbance
activity in these slowly decaying perturbations was concentrated towards the centre
of the channel. The eigenfunctions shown in von Kerczek & Davis (1974) and the
eigenfunctions associated with the values of µ given in table 1 also have the main
disturbance activity in the middle of the channel. For ease of description of the results
these modes will subsequently be referred to as centre modes. A plot of ψ0(y) for a
centre mode at R = 700 is shown in figure 1; note that ψ0 is real as µ is real. The
eigenfunction for this least damped centre mode is dominated by ψ0 with ψ±1 being
about one thousandth of the size of ψ0, and monotonic decay of the size of all higher
harmonics in the solution.

Despite the consistency of the three sets of results above, they give a misleading
picture of the stability properties of the underlying oscillatory flow. For a channel
half-width of 8, increasing the Reynolds number from 570 (see table 1) to 620 is
sufficient to expose a complex µ whose real part is larger than any of the co-existing
purely real eigenvalues of the system. This new mode, which is even in y, now has
its main activity just outside the edge of the Stokes layer on the channel wall; the
eigenfunctions found in BB also had this spatial structure. Further increases in the
value of R to about 805 take this eigenvalue into the right-hand half of the complex
plane, indicating linear instability of the basic flow. Similarly, when h = 16, increasing
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Figure 1. The structure of the real part of the dominant eigenfunctions, ψnr , as a function of
the spatial variable y, for a centre mode and a Stokes mode at R = 700, a = 0.3 and h = 16.
The centre mode ψ0(y) is the curve labelled c and has µ purely real with µ= −0.0667617.
The calculated value of µ is µ= −0.358467+0.159921i for the Stokes mode with the real part
of the eigenfunctions for n= 0, ±1 shown by the curves labelled s. The values N = 170 and
K = 48 were used for the calculations shown by lines. The centre mode eigenfunction, ψ0r , is
shown by a solid line, with Stokes mode eigenfunctions denoted by broken lines as follows:

, ψ0r ; , ψ1r ; , ψ−1r . The + signs denote ψ0r for the Stokes mode with
K = 96.

the value of R from 750 to 760 brings out odd and even modes with complex values
for µ which have real parts greater than the values given in table 1. A further increase
of R to approximately 785 then makes both these even and odd travelling wave
modes unstable.

The spatial structure of the larger eigenfunctions ψn(y) making up the Stokes mode
at R = 700 is shown in figure 1 via the curves labelled s. The difference between the
spatial structure of the eigenfunctions for the least damped (even) centre mode and
the even Stokes mode is quite apparent. The Stokes layer on the wall y = −16 of the
channel extends to approximately y = −12 with the basic flow being almost zero in
the range −12 <y < 12. This figure illustrates the result that for small values of n

the eigenfunctions ψn(y) are very small in the Stokes layer itself, with most of the
activity occurring outside the wall layer. For higher harmonics, the maximum of the
eigenfunction moves into the Stokes layer, but for these eigenfunctions the size of ψn

is many orders of magnitude smaller than the size of ψ0. Figure 1 also illustrates the
effect of increasing the value of K on the accuracy of the eigenfunctions. The lines in
this figure were produced by cubic spline interpolation of 48 data points. The points
shown by a + correspond to using K = 96 and they agree quite well with results
from the coarser mesh. Despite the fact that there is a visible difference between the
values of ψ0r (y) for the two values of K , the computed eigenvalues µ for the two
calculations agreed to six figures.

For the odd disturbance mode the dependence of the disturbance growth rate on
R, for h = 16 and a =0.3, is best seen in figure 2, which also shows the two least
stable odd centre modes discussed above. Note that figure 2 pertains to odd modes;
the values of µr for the even travelling wave (complex µ) mode would be graphically
indistinguishable from the odd complex mode, despite the factor of two difference
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µr

R
8007006005004003002001000

0.5

0

–0.5

–1.0

–1.5

–2.0

–2.5

Figure 2. Growth rates µr of various odd disturbance modes, for a = 0.3 and h =16, as a
function of R. The solid lines give µr for the travelling wave Stokes layer disturbance mode
only when µ is complex; the dashed lines give the growth rates of the first two odd centre
modes.

R
300280260240220200

–1.6

–1.8

–2.0

–2.2

–2.4

µr

Figure 3. Details of the growth rate behaviour for the odd Stokes layer mode and adjacent
odd centre disturbance modes as a function of R; again h = 16 and a = 0.3. The solid lines
correspond to the travelling wave Stokes layer disturbance mode and indicate where µ is
complex. The dashed lines correspond to purely real values of µ. Modal interaction occurs
only at the end points of the solid lines.

(seen in table 1) in the growth rates for the even and odd centre modes. Further
note that the growth rate behaviour of the Stokes layer mode in figure 2 has been
deliberately simplified by plotting µr only when µ is complex; this allows a simple
and direct comparison to the results shown in figure 1(b) of BB for the Stokes layer
mode. For the case of the Stokes layer in a semi-infinite layer of fluid the growth
rate µ took complex values on disjoint intervals of the R-axis, while between these
intervals a continuous spectrum of decaying modes with µi = 0 was allowed. In the
case of Stokes layers on the walls of a wide channel, the continuous spectrum of
real µ for the semi-infinite layer is replaced by a discrete spectrum of real values
for the growth rate and figure 3 shows details of some of these real eigenvalues and
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Figure 4. Details of growth rate variation for odd modes as a function of R near neutral
conditions when a =0.3 and h = 16. The solid lines correspond to the travelling wave Stokes
layer disturbance mode and indicate where µ is complex. The dashed lines correspond to
purely real values of µ.

BB Present results

a R µ µe µo

0.30 800.0 (0.08174, 0.35096) (0.08238, 0.34583) (0.08111, 0.35610)
0.38 847.5 (0.67594, 0.14806) (0.67616, 0.14881) (0.67564, 0.14732)

Table 2. Eigenvalues µ for the semi-infinite Stokes layer, taken from BB, compared with
values of µ obtained here for a wide channel (h = 16).

how they interact with the (eventually unstable) Stokes layer mode as the Reynolds
number is increased. At the left-hand end point of each solid line in figure 3 two
purely real eigenvalues combine and bifurcate to become a pair of complex-conjugate
eigenvalues, corresponding to the travelling wave Stokes layer mode, as the Reynolds
number is increased. The reverse process occurs at the right-hand end points of each
solid line. Two complex-conjugate eigenvalues coalesce on the real axis and then
separate into two purely real eigenvalues as R is increased. We remark that on the
left-most and on the three solid lines towards the right of figure 3 it appears that
there is mode crossing occurring at interior points away from the ends. This is purely
illusory for at these points of the solid lines the imaginary part of µ is non-zero.
Interactions of real and complex eigenvalues similar to those shown in figure 3 occur
in all the gaps in the growth rate curve in figure 2. Further, figure 4 shows that with
increasing R the complex eigenvalues continue to coalesce and split into two real
eigenvalues which subsequently recombine and bifurcate to a complex-conjugate pair
of eigenvalues, even when these complex eigenvalues are well away from the purely
real, centre mode, part of the eigenvalue spectrum.

A more detailed check on the results for the channel was conducted by extracting
some of the published values for µ from BB and comparing them with predictions
from the current numerical scheme. This is presented in table 2 which shows good
agreement between the values of µ from the even and odd modes for a wide channel
(h = 16) and the growth rate for unstable modes in the semi-infinite Stokes layer. In
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Figure 5. Neutral curves for even disturbance modes, around critical conditions, for h ranging
from 5 to 8 in steps of one half; the lowest curve is for h = 5 and h increases monotonically
up the figure. Some fingers are shown explicitly on the upper four curves with the crosses
indicating the location of the base of the others.

particular, µr for the semi-infinite flow lies between the real parts of the growth rate
for even and odd disturbances in the channel flow for this value of h.

The most intriguing feature of the results in BB for the semi-infinite Stokes layer
was the fine structure of the neutral curve, which had thin finger-like protrusions from
an essentially smooth curve (BB, figure 3). This feature was reproduced in all the
neutral curves examined using the current numerical procedures. In fact the results
for either the even or odd mode for a channel with h = 16 were essentially the same
as figure 3 in BB, which concentrated on a small region, 0.368 � a � 0.386 where
707.6 � R � 709.4, near critical conditions on the neutral curve. The close agreement
between the neutral curves for the channel flow and for the semi-infinite Stokes layer
flow is not surprising as the mechanism generating the fingers is identical for both
the confined and semi-infinite flow geometries under consideration. Figure 1(c) of BB
shows details of two complex values of µ coalescing and then separating into two real
eigenvalues as R is increased. One of these real eigenvalues moves into the right half
of the complex plane for a tiny interval of R, thus forming part of a finger, before
rejoining the other nearby real eigenvalue and continuing on as a complex-conjugate
eigenpair with negative real part. Similar behaviour of µ for the channel flow is seen
in figure 4 near R = 778 where the vertical, elliptical dotted parts of the growth rate
curve indicate that the complex-conjugate pair of eigenvalues has been transformed
into two real eigenvalues, one of which goes very close to the zero-growth-rate line.
An increase of O(10−3) in the value of a in figure 4 would cause the upper real
eigenvalue to have µr > 0 for a very narrow interval of R, and hence create a finger.

Figure 5 shows the details of the neutral curve and the associated fingers near
critical conditions for even disturbance modes and channel half-widths between 5 and
8; the uppermost neutral curve is for h = 8. The fingers protrude from the body of the
neutral curve at points where µi = 0, as in BB, and the spacing of the fingers along
the curves is fairly insensitive to the value of the channel width. However the size of
each finger is very dependent on h. For h =8 the fingers descend approximately 1.2
units in R from their base on the main body of the neutral curve; the base on the
curve has an extent of about 4 × 10−4 units in wavenumber space. As h decreases
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Figure 6. Critical wavenumber ac as a function of channel half-width h. The solid line is for
even disturbance modes while the dashed line is for odd perturbations.

both the vertical and horizontal dimensions of the fingers decrease, so that, at h =6.5,
the vertical drop of the fingers is barely visible on the scale of figure 5, while for
h = 5 the base of each finger has a horizontal length of only O(10−6) with a Reynolds
number drop of approximately 0.025. The other feature evident in figure 5 is the
decrease in the amplitude of the undulations of the neutral curves as h decreases.
These changes in the curvature details of the neutral curve and the finger properties
are due to the weakening influence of the centre modes on the Stokes layer mode as
h decreases. For wide channels the centre modes are very weakly damped, as seen
from table 1, and hence have significant interaction with the Stokes layer mode for
Reynolds numbers close to neutral conditions. With decreasing h the centre modes
become much more strongly damped and hence have much less effect on the Stokes
layer mode eigenvalues near neutral conditions. Similar effects are also observed at
fixed h and R well above neutral, with the value of µr tending to increase almost
linearly with R and decreasing size of the intervals in R for which µ is purely real.
Notice that the critical value of R for instability for all the values of h shown in
figure 5 is associated with the tip of a finger, and hence µ = 0 at critical conditions.
This holds even for the tiny fingers found with h = 5 and is a consequence of the
spacing of the fingers along the neutral curve and the small curvature of the neutral
curves for flows in narrow channels. Finally, we point out that the most unstable flow
configuration found for the channel occurs with h close to 5.

The variation of the linear stability critical conditions (ac, Rc) with plate separation
is shown in figures 6 and 7. (In calculating the critical conditions smoothed neutral
curves were used and the effects of any protruding fingers ignored. While this is
technically incorrect, this approximation causes an error of less than 0.2% in the
critical Reynolds number, as the fingers extend less then 1.5 units below the bulk of
the neutral curve, and will shift the critical wavenumber by less than 0.004.) Figures 6
and 7 both show that the critical conditions for oscillatory flow in a channel tend to
a limiting value as the channel width increases. It is worth recalling that the critical
conditions for the semi-infinite Stokes layer were given as Rc ≈ 708 with ac ≈ 0.375
in BB. Thus the above figures indicate that the critical conditions for linear stability
of oscillatory flow in a channel are esentially those of the semi-infinite Stokes layer
for channel widths h greater than about 14. As the channel width decreases, the odd
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Figure 7. Critical Reynolds number Rc as a function of channel half-width h. The solid line
is for even disturbance modes while the dashed line is for odd perturbations.

disturbance mode becomes more stable while the even mode perturbations become
more unstable until h ≈ 5, when the critical Reynolds number begins to increase.
For h smaller than 5 the basic flow can no longer be described in terms of a
quiescent core with Stokes layers on the walls and the basic flow velocity profile will
become UB ∼ cos τ + (h2 − y2) sin τ as h → 0. Therefore at small h the basic flow
is approximately quasi-steady and disturbances with properties closer to Tollmien–
Schlicting waves might be expected to play a role. This will lead to an increase in the
critical Reynolds number, in accordance with the results in figure 7.

Neutral curves over a wider range of wavenumber, typical of the results obtained
for the stability of oscillatory channel flow, will be presented later and these will be
combined with those from the analogous two-dimensional problem of axisymmetric
disturbances to oscillatory flow in a circular pipe. This latter problem is considered
next.

4. Axisymmetric disturbances in a pipe
Most experiments on the stability of oscillatory flow have been carried out in

circular pipes, so in this section the similarity between the equations governing even
disturbances in a channel and axisymmetric disturbances in a circular geometry
is exploited with the aim of deriving some stability results for oscillatory flow in
a pipe. The formulation of the governing equations parallels that presented for
the channel stability problem given in § 2, and is only briefly outlined here. Non-
dimensional coordinates (x, r, θ), with the x-axis the longitudinal axis of the pipe, are
introduced, where again the lengths are scaled on a Stokes layer thickness

√
2ν/ω. The

dimensionless radius of the pipe is denoted by h and with non-dimensional velocity
components (u, v, w) the basic flow generated by oscillating the pipe in the direction
of its longitudinal axis with velocity U0 cosωt is

u = UB(r, τ ) = Re

{
J0((1 − i)r)

J0((1 − i)h)
eiτ

}
= u1(r)e

iτ + u−1(r)e
−iτ , v = w = 0, (4.1)

where J0 denotes the Bessel function of order zero. As with the channel problem, all
velocity components have been scaled on U0 and τ = ωt .
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While the profile (4.1) is appropriate to the experiments of Clamen & Minton
(1977), many experiments on the stability of Stokes layers are not conducted in
oscillating pipes but rather in pipes held at rest while oscillatory fluid flow occurs
within. If a frame of reference where the pipe walls are stationary is used then the
velocity profile

u = UBpg(r, τ ) = Re

{(
J0((1 − i)r)

J0((1 − i)h)
− 1

)
eiτ

}
, v = w = 0, (4.2)

is obtained. The profile can be interpreted as being generated by a dimensional
oscillatory pressure gradient −ρωU0 sin ωt , where ρ is the fluid density. It is clear
that the stability properties of the basic flow profiles (4.1) and (4.2) are the same.
However even the profile (4.2) is not appropriate for the piston-driven experiments
of Akhavan et al. (1991a), Eckmann & Grotberg (1991) or Hino et al. (1976). When
the basic flow is driven by a moving piston the equation of continuity requires that,
for all x, the volume flux in the pipe be exactly that generated by the moving piston.
This leads to the basic flow

u = UBps(r, τ ) = Re

{
J0((1 − i)h)

J2((1 − i)h)

(
1 − J0((1 − i)r)

J0((1 − i)h)

)
eiτ

}
, v = w = 0, (4.3)

where the moving piston has (dimensional) velocity −U0 cos ωt . It is shown in the
Appendix that the stability properties of the piston-driven basic flow (4.3) are simply
related to those of the wall-driven flow (4.1). In particular, if the flow (4.1) is neutrally
stable at the wave number a† and Reynolds number R† then the flow (4.3) is
also neutrally stable at the same wavenumber but at the lower Reynolds number
|J2((1 − i)h)/J0((1 − i)h)|R†. Thus it is only necessary to examine the stability of the
basic state given by (4.1) in order to cover most of the conditions that have been used
in experiments. Note that the factor |J2((1 − i)h)/J0((1 − i)h)| is about 0.9 at h = 10
and tends to 1 as h → ∞; its value has been ignored, and will continue to be ignored,
in our discussions of experimental results.

For axisymmetric disturbances the perturbed velocity is given by

(u, v, w) = (UB, 0, 0) + ε

(
1

r

∂Ψ

∂r
, −1

r

∂Ψ

∂x
, 0

)
, (4.4)

where ε � 1 and Ψ (x, r, τ ) denotes the stream function, which is further decomposed
as

Ψ = eµτeiaxψ(r, τ ) + complex conjugate; (4.5)

ψ(r, τ ) is taken to be 2π-periodic in τ . With this form for the velocity field the
linearized equation for ψ is then

∂

∂τ
(D2 − a2)ψ =

{
1
2
(D2 − a2) − µ − iaRUB

}
(D2 − a2)ψ + iaR(D2UB)ψ, (4.6)

subject to

ψ = ψr = 0 on r = h. (4.7)

Here the operator D2 is given by D2 = r∂r (r
−1∂r ) as usual. From this point the

derivation of the discrete equations analogous to (2.7) follows that for the channel
so closely that the analysis is not replicated here. The only changes of substance
are the new definitions of the differentiation matrices L and V associated with the
use of polar coordinates and the replacement of the UByy coefficient by the quantity
D2UB . Thus (2.7) is also the discrete equation governing the stability of the pipe flow
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Figure 8. Critical conditions for instability in a pipe as a function of pipe radius h.
The solid line gives Rc and the dashed line gives ac .

provided that L, V and M are now given by(
∂4

r − 2r−1∂3
r + (3r−1 − 2a2)∂2

r − (3r−3 − 2r−1a2)∂r + a4
)
/2 → V, (4.8a)

∂2
r − r−1∂r − a2 → L and M = L−1(u1L − u1LI), (4.8b)

where u1L denotes the diagonal matrix with values at the mesh points given by

u1L = −i
J2((1 − i)r)

J0((1 − i)h)
. (4.8c)

Last, allowing some abuse of notation again, within the definition of M, u1 denotes the
square matrix with the mesh values of u1(r) down the diagonal. Following Fornberg
(1996) a Chebyshev mesh was applied to the diameter of the pipe and the even
symmetry appropriate to axisymmetric solutions used to reduce the computational
domain to 0 � r � h. The kinematic conditions at the origin (Batchelor & Gill 1962)
required ψn(0) = 0 for axisymmetric solutions and the usual no-slip conditions were
imposed at the pipe wall using the same techniques as for the channel. The eigenvalue
problem (2.10) was again obtained following the assembly of the ψn into the vector
Φ in the manner of (2.11).

The eigenvalues of (2.10) now determine the properties of axisymmetric disturbances
in purely oscillatory pipe flow. Matlab was again used to find the eigenvalues and
eigenvectors of (2.10) and checks similar to those described for the channel calculations
were applied to the results of these pipe flow calculations. In particular, at low R

the results obtained for µ agreed with the circular-pipe analogue of the Dolph–Lewis
eigenvalues, indicating that the differentiation matrices for the Laplacian and viscous
operators in (4.8) had been correctly implemented. The variation of µ with R and a

for the pipe flow exactly parallels that obtained for the even modes in the channel,
so little discussion of the qualitative features of the behaviour is needed. Instead the
main results are given immediately.

The variation with h of the critical conditions (ac, Rc) for instability in a pipe is
shown in figure 8. This figure shows that for oscillatory flow in a pipe there is an
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Figure 9. Neutral curves for even and odd disturbance modes in a channel and for
axisymmetric perturbations in a pipe. The circle symbol labels the pipe neutral curves, the ×
symbol the even channel modes with + attached to the odd channel mode neutral curves. The
solid lines are for h = 16, the dotted lines for h = 10 and the dashed lines for h = 7.

overall minimum in Rc at a pipe radius of about 11. This pipe radius is very close to
that used by Akhavan et al. (1991a) in their experiments and further comparison with
their results will be given in the conclusions. Although not shown in this figure, for
values of pipe radius greater than about 25 the critical conditions for axisymmetric
disturbances in the pipe tend to the critical conditions for even (or odd) disturbances
in a channel, and hence to the critical conditions for the Stokes layer in a semi-infinite
flow. Recall that in the channel the minimum Rc occurred at h ≈ 5 with agreement
between Rc for the channel and the semi-infinite flow appearing for h greater than
about 14. This factor of approximately two difference in the values of h for the salient
features of Rc in a pipe and in a channel is removed if the geometry of the flow
domain is characterized by an area measure rather than a linear measure. The ratio
of the area of the flow domain to the area occupied by the Stokes layer in the channel
is just 2h/2 = h, while in the pipe this same area ratio is now (πh2/2πh) = h/2, to
leading order. Thus to achieve the same area ratio in a pipe as in a channel, the
radius of the pipe needs to be approximately double the half-width of the channel.

Finally a collection of smoothed neutral curves, for various values of h, for both
the channel and the pipe is shown in figure 9. For the channel, the even and odd
mode neutral curves are indistinguishable at h =16 so there appears to be only one
full line for the channel in figure 9. This neutral curve is bracketed by the dotted lines
corresponding to the neutral curves at h = 10, with the lower curve associated with
the even mode disturbance. When h = 7 the stability properties of the even and odd
modes are now quite different and their neutral curves are well separated, again with
the even mode curve being the lower dashed line. The neutral curves for the circular
pipe, at the same values of h as for the channel, are labelled with a circle. The dotted
curve at h = 10 has a critical R of about 566, which is close to the minimum Rc(h)
given in figure 8.

The results in figure 9 are for the wall-driven flow (4.1) or the pressure-gradient-
driven flow (4.2). If we were to consider the piston-driven oscillatory flow (4.3) then
only the labelling on the Reynolds number axis of figure 9 would need to be changed.



18 P. J. Blennerhassett and A. P. Bassom

2π0 π

τ

1.0

1 ∂Ψ

∂rr

0.5

0

–0.5

–1.0

Figure 10. Arbitrarily scaled axial velocity perturbation in a pressure-gradient-driven flow at
r = 8.4095, with R = 540, a =0.33347 and h = 10.6.

In particular, for a piston-driven oscillatory flow in a pipe with h =10 the critical
value of R would be reduced to approximately 0.9 × 566 ≈ 510.

5. Discussion and conclusions
The most encouraging aspect of the neutral curves presented in figure 9 is that, over

a range of pipe radii, the theoretically predicted critical Reynolds number for linear
instability is closer to the experimentally observed transition to turbulence occurring
at Reynolds numbers of about 250 to 275 than the corresponding results for a channel
flow. Nevertheless, there is of course still a large discrepancy between the experimental
observations and the calculations presented here. As just one example, Akhavan et al.
(1991a) examine the structure of the turbulent, purely oscillatory, piston-driven flow
in a pipe with h = 10.6 and R = 540, while according to our calculations, the flow
would only be just linearly unstable. Similarly, figure 6 in Eckmann & Grotberg
(1991) displays turbulent velocity measurements at R =427 with h ≈ 20 while our
results indicate that the flow is linearly stable.

Most reports of experiments on the stability of purely oscillatory flow present
velocity traces, either from laser-Doppler devices (Akhavan et al. 1991a; Eckmann &
Grotberg 1991) or from hot-wire anemometers (Eckmann & Grotberg 1991; Hino
et al. 1976), at a selection of fixed positions inside the pipe. Equations (4.4) and (4.5)
define the axial velocity component, and in figure 10 the arbitrarily scaled predicted
axial velocity perturbation at r = 8.4095 for the least damped mode with R =540
and h = 10.6 is shown for one cycle of the basic flow. The apparent resemblance
of this velocity-versus-time trace to turbulent bursts in the flow is noted. The
displayed velocity trace comes from the eigenfunction corresponding to the eigenvalue
µ = −0.105574 where a = 0.33347 and the pressure-gradient-driven basic flow given
by (4.2). The parameter h was chosen to be close to one set of the experimental
conditions examined by Akhavan et al. (1991a), R was chosen to be slightly below
critical for a wall-driven or pressure-gradient-driven flow. Further, a was selected
to be close to the appropriate critical wavenumber and, for convenience, so that µ

was purely real. The velocity trace displayed in figure 10 indicates the axial velocity
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Figure 11. Axial velocity variation with time in a pressure-gradient-driven flow at r = 10.0375,
with R = 540, a =0.33347 and h =10.6. The size of the perturbation velocity has been chosen
arbitrarily to make the fluctuations visible. The dashed curve is the undisturbed axial velocity.

perturbation occurring just outside the edge of the Stokes layer on the pipe wall. Note
that the exponential decay of the velocity perturbation in time has been suppressed in
plotting this figure; in other words the eµτ part in the stream function decomposition
(4.5), with µ real-valued, has not been shown.

The variation with time of the axial velocity inside the Stokes layer plotted in
figure 11 shows the combined effect of superimposing the disturbance onto the
underlying basic profile. The size of the velocity perturbation has been arbitrarily set
to make the perturbations visible and again the decay in time of the perturbation has
been ignored. Here r = 10.0375, but all other parameters are as in figure 10. Allowing
for the rectification of the velocity inherent in hot-wire anemometry this velocity
trace looks similar to those reported by Hino et al. (1976) and Eckmann & Grotberg
(1991).

The extremely high-frequency components in this laminar velocity distribution are
actually nothing more than artifacts of the choice of reference frame for the basic
flow. With the basic flow (4.1) and identical values for the parameters a, R and h

the numerical solution of the governing equation (4.6) again gives the eigenvalue
µ = −0.105774, but this time a much simpler eigenfunction results and the velocity
trace corresponding to figure 10 is now as shown in figure 12. The effect of a change
in frame of reference for the basic flow was noted in BB, and here it is easy to show
that if equation (4.5) gives the form of the stream function for a wall-driven basic
flow, with ψ(r, τ ) the solution of equation (4.6), then the stream function for the
pressure-gradient-driven basic flow becomes

eµτeiaxeiaR sin τψ(r, τ ) + complex conjugate, (5.1)

with the same µ and ψ as in equation (4.5). Thus the high-frequency oscillations
in the velocity signal are due to the presence of the eiaR sin τ term in (5.1), while the
apparent bursts of activity in figure 10 are just the result of the points of stationary
phase in the eiaR sin τ factor. We reiterate that the slow exponential decay in time, the
eµτ term, has been omitted from the velocity traces in both figures 10 and 12.
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Figure 12. Arbitrarily scaled axial velocity perturbation in a wall-driven flow at r = 8.4095,
with R = 540, a =0.33347 and h = 10.6.
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Figure 13. Energy density spectrum for the axial velocity variation with time in a
pressure-gradient-driven flow (×) and a wall-driven flow (+) at r = 10.0375, with R =540,
a = 0.33347 and h = 10.6.

The velocity trace shown in figure 11 can be decomposed into its harmonic
components, resulting in the energy density spectrum shown by the × symbols
in figure 13. The n= 1 component, the basic flow, contains the most energy and, apart
from this odd harmonic, the even harmonics denoted by the upper set of × symbols
contain nearly 8 orders of magnitude more energy than the odd harmonics. The energy
is spread evenly over the even harmonics for n up to about 200 and then there is a rapid
decrease in energy density with increasing n. The flat section of the spectrum around
the energy density of 10−15 is associated with the previously mentioned numerical
difficulties in determining the eigenfunction. The + symbols denote the energy density
spectrum of a velocity trace when the basic flow is generated by oscillating the pipe
itself. The value of r = 10.0375, when h =10.6, has ensured that the amplitude of
the basic flow is approximately the same for the two flow configurations, and this is
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reflected in the energy density levels agreeing approximately for the n= 1 frequency.
Again, the even harmonics contain the majority of the energy of the perturbation,
but the bandwidth of frequencies in the disturbance is much smaller when the pipe
oscillates. This is primarily due to not having to represent the function eiaR sin τ as a
Fourier series.

Apart from Clamen & Minton (1977), all the experimental work discussed here has
effectively used a pressure-gradient-driven basic flow and all report high-frequency
oscillations in the velocity traces for a range of quite small Reynolds numbers.
However, these perturbed velocity traces are uniformly described in terms of some
type of turbulence. For instance, Hino et al. (1976) use the term “weakly turbulent”
to describe a flow where the velocity traces contain high-frequency components, but
otherwise have good agreement with the theoretical basic flow. A flow with R as
small as 35, for h = 6.19, is then classified as weakly turbulent by those authors.
However, an alternative explanation is that the mechanical vibrations associated with
the production of linear oscillatory motion from rotational motion, via some form
of scotch yoke, periodically forces the damped modes of the system. Eckmann &
Grotberg (1991) acknowledge the presence of periodic, mechanical vibrations in the
drive mechanism used in their experiments and it is likely that all the experiments
discussed here suffer from some level of external vibration. The structure (5.1) of
small disturbances in pressure-gradient-driven flows applies to the weakly damped
centre modes as well as the Stokes mode and hence it could be possible to observe
decaying, highly oscillatory perturbations in each cycle at low Reynolds numbers.
Thus, at h =2.76 and R = 193 the velocity trace in figure 4(a) of Hino et al. (1976) is
entirely consistent with an interpretation as a laminar, high-frequency perturbation,
rather than their identification of the flow as weakly turbulent. Similarly, Eckmann &
Grotberg (1991) explain the large scatter in their laser-Doppler velocity measurements
at R =427 in terms of turbulence in the Stokes layer on the wall. Given the structure
(5.1) of the disturbances, this conclusion can now be questioned as the sampling
rate of the velocity was only 100 measurements per cycle while approximately 2aR

samples per cycle would be needed to resolve the highest frequency components
in the velocity. Further, with wavenumbers around 0.3, a sampling rate of about
250 measurements per cycle is needed when R = 427. A similar observation can be
made on the experiments reported by Akhavan et al. (1991a) who conducted a large
number of experiments with R = 540 and a sampling rate of 240 measurements per
cycle which is again below the Nyquist frequency.

The presence of these high-frequency oscillations in the disturbance structure
associated with pressure-gradient-driven flow will certainly make experimental
determination of critical conditions difficult, but our results reveal a further,
unexpected complication for experimental work. For the experiments discussed here
critical conditions were determined by comparing measured velocity profiles with
the velocity profile appropriate to oscillatory flow in an infinitely long pipe. If there
were significant differences between the theoretical predictions and the observed
axial velocity then the basic flow was considered to be in the unstable flow regime.
Underlying this approach is the assumption that any flow disturbances caused by the
driving piston, or a contraction in the pipe, will decay with distance away from the
piston, or the contraction, leaving a velocity profile close to that in an infinitely long
pipe. Eckmann & Grotberg (1991) quote Gerrard & Hughes (1971) as the source for
the entrance length formula L = 0.06DR (in our scaling) to justify their claims that
their test section is free of any inlet effects. Here D is the (dimensional) pipe diameter
and Eckmann & Grotberg (1991) had a worst case L/D of approximately 29; the
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apparatus of Akhavan et al. (1991a) had L/D =400 while that of Hino et al. (1976)
had L/D values as low as 70.

In principle, the nonlinear equations and boundary conditions governing the
laminar, axisymmetric flow generated by a piston performing axial oscillations in
a long pipe of constant cross-section are straightforward to write down. The exact
solution of these equations is of course extremely difficult to obtain, but the main
features of the flow are easily inferred. Close to the piston we expect the axial velocity
to be purely oscillatory and almost uniform over the cross-section, apart from a thin
boundary layer on the walls of the pipe, with significant oscillatory radial velocity
components. Further from the driving piston we would expect reduced radial velocity
components as the velocity field approached the purely axial form (4.2). Sufficiently far
from the piston, the nonlinear equations governing the basic flow can be approximated
by linear equations which describe the ultimate approach to this purely axial velocity
field. If the spatial decay of the remnant effects of the driving piston is sought via a
stream function of the form∫ r

0

sUBps(s, τ ) ds + eiaxeµτΨ (r, τ )

then equation (4.6) is obtained provided provided ‖Ψ ‖ � 1. As we are describing
the basic flow we must have µr =0 and for the spatial decay of the synchronous
components of the effects of the piston we require µi = 0, making µ = 0 in (4.6).
Thus the ultimate spatial decay of disturbances due to an oscillating piston hinges on
the existence of eigenvalues a with ai > 0. Unfortunately, our result that µ = 0 at the
critical conditions for instability now has the additional implication that perturbations
in the basic flow, caused by imperfections in the experimental apparatus, do not decay
spatially at critical conditions. As a is real at critical conditions, the eiax term in the
disturbance structure (4.5) does not produce any spatial decay with changes in x.
Thus our linear stability predictions also mean that the method of experimentally
determining critical conditions described above is not valid as the effects of the
oscillating piston (or pipe contraction) extend further and further from the piston as
the critical Reynolds number is approached. This conclusion merits some qualification
however, for although µ = 0 at critical conditions, this only occurs on the protruding
fingers of the neutral curve. It could be argued that the fingers are so tiny that other
nearby parts of the neutral curve, on which µi �= 0, could be determined experimentally
provided that one can suppress the initial disturbance to a sufficiently low level.

At low Reynolds numbers it is possible to calculate the complex eigenvalues a

for any of the basic flows (4.1)–(4.3) when µ is purely imaginary. There are several
families of eigenmodes present for small R, but it can be shown that the least spatially
damped disturbances have a wavenumber expansion in the form

iah ∼ −j1,1 + O
(
n−1/2, R

)
where n → ∞ and R → 0. (5.2)

Here j1,1 is the first positive zero of the Bessel function J1(z) and n denotes
the harmonic in the expansion ψ(r, τ ) =

∑∞
n = −∞ ψn(r)e

inτ . Thus, at low Reynolds
numbers, all synchronous disturbances will have decayed spatially by at least a factor
of e when x/h increases by approximately 0.26.

Some preliminary calculations using the Matlab routine polyeig, for values of R

up to 5 and with µ = 0, showed a complicated evolution of the eigenvalues for a. The
behaviour of the values for a was somewhat similar to that observed for the evolution
of µ as R was increased, allowing for the fact that the values for a are close to the
imaginary axis while those for µ were near the real line. Extending the calculation



Stability of oscillatory channel flow 23

of the eigenvalues for a to larger values of R was not feasible, and in any event the
answers are already known. For example with the basic flow (4.1) then at R ≈ 566.4
and h = 10 the eigenvalue for a will be purely real with a ≈ 0.3335.

While our results for the stability of oscillatory flow in a channel or pipe do not
agree with the current experimentally accepted Reynolds number for the transition
from laminar flow to turbulent flow, we have provided independent confirmation
of the original predictions made in BB for the stability of a Stokes layer on a flat
plate.† The present results also suggest that the many experimental measurements
of high-frequency disturbances in oscillatory pipe flow may have been misinterpreted
as evidence of turbulent bursts in the flow, when in fact the flow is still completely
laminar. Further, our results show that the usual assumption regarding the spatial
decay of entry length effects does not necessarily hold in oscillatory flows, providing
yet more difficulties in the experimental determination of the transition to turbulence.

The above comparison of experimental observations with our results, based on
two-dimensional, linear, Floquet theory is only one of several possible interpretations
of the existing experimental results. Other scenarios describing the stability properties
of oscillatory flow bring in three-dimensional effects or nonlinear effects. Within the
context of linear theory, Squire’s theorem allows us to consider only two-dimensional
eigenmodes, as we have done in this paper, but there is no guarantee that two-
dimensional initial value formulations of the stability problem will capture the often
stated explosive growth of small disturbances during the deceleration phase of the
velocity cycle. Indeed, the two-dimensional numerical results of Akhavan et al. (1991b)
found no such rapid growth of disturbances in their initial value calculations. Thus,
for two-dimensional disturbances it appears that nonlinear effects would need to
be invoked to explain the cyclic rapid growth of small perturbations. Under the
assumption that nonlinear effects produce finite growth rates, our linear theory
results should be recoverable experimentally provided that background disturbances
are kept so small that, even with the nonlinear growth effects in play, the disturbance
size remained sufficiently small for linear theory to hold throughout the entire cycle.
Whether this can be achieved in real experiments is of course open to question and
obviously limits the practical application of our theory.

Quasi-steady theory suggests that when R � 1 the instantaneous growth rate of
disturbances is O(R) so that over an O(1) time an initial perturbation might amplify by
a factor of O(exp(γR)) for some O(1) constant γ . Continuing this argument it might
appear that linearization is therefore only justifiable if the disturbance amplitude is
exponentially small. While this result is only formally valid for R → ∞, if it continues
to hold for finite R then it could impose a severe restriction on experiments. However
calculations described in Akhavan et al. (1991b) imply that at R = 500 the largest
instantaneous growth rate is only O(10−2) and certainly nowhere near the O(R) size
suggested by quasi-steady theory. Thus the conclusion that linearization might only
be valid for exponentially small perturbations appears to be unduly pessimistic.

The available direct numerical solutions of the governing Navier–Stokes equations
for oscillatory flow consider two-dimensional flows (Juárez & Ramos 2003) and

† Since completing this work we have learnt of calculations by Gao & Lu (2006) which provide
further independent confirmation of some of the predictions in BB. They were concerned with
the effects of wall suction and blowing on the stability of the flat Stokes layer and although their
numerical scheme was similar in spirit to that used in BB, it was independently developed. In all
cases where direct comparison could be made their results show excellent agreement with those in
BB.
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two- and three-dimensional flows in channels (Cosgrove, Buick & Tonge 2003).
Neither are easily related to our calculations, but they both report turbulence at
values of Reynolds number where our results indicate the basic flow to be stable.
However, the results of Juárez & Ramos (2003) at R = 268.5 do show an almost
uni-directional, laminar flow field at one time instant with a distorted, vortical field
at some later time in the cycle. This is consistent with a scenario of laminar, high-
frequency oscillations occuring periodically while the underlying flow is still stable,
as discussed above. Clearly there is still scope for much further work on the stability
properties of purely oscillatory flows.

We thank the referees for their comments and suggestions for improvement of this
paper.

Appendix. Stability of a generic oscillatory flow in a pipe
Here we provide some further evidence on the relationships between the stability

properties of the basic flows (4.1)–(4.3). Both velocity profiles (4.2) and (4.3) have the
general form

U (r, τ ) = Re

{
A

(
J0((1 − i)r)

J0((1 − i)h)
− 1

)
eiτ

}
, v = w = 0, (A 1)

where the constant A= 1 for the pressure-gradient-driven flow given by (4.2) and
A= −J0((1 − i)h)/J2((1 − i)h) for the oscillating piston case (4.3). The generic form
U (r, τ ) in (A 1) can be written in terms of UB(r, τ ) (as defined by (4.1)) according to

U (r, τ ) = |A|UB(r, τ + α) − |A| cos(τ + α) (A 2)

where α = arg{A}. The equation governing the stability of the profile U (r, τ ) is (4.6)
with UB , ψ(r, τ ), µ and R replaced by U , φ(r, τ ), µg and Rg respectively. Explicitly,
the equation becomes

∂

∂τ
(D2 − a2)φ =

{
1
2
(D2 − a2) − µg − iaRgU

}
(D2 − a2)φ + iaRg(D2U )φ, (A 3)

subject to

φ = φr = 0 on r = h. (A 4)

By replacing the generic profile U with its representation in terms of UB , equation (A 3)
can be recast as

∂

∂τ
(D2 − a2)φ = 1

2
(D2 − a2)2φ − µg(D2 − a2)φ − iaRg|A|UB(r, τ + α)(D2 − a2)φ

+ iaRg|A| cos(r, τ + α)(D2 − a2)φ + iaRg|A|(D2UB(r, τ + α))φ. (A 5)

Suppose that ψ(r, τ ) denotes the eigensolution of (4.6) corresponding to the eigenvalue
µ at parameter values R and a. If we now set

φ(r, τ ) = eiaRg |A| sin(τ+α)ψ(r, τ + α) (A 6)

in (A 5) the stability of the generic profile (A 1) is now governed by the problem

∂

∂τ
(D2 − a2)ψ =

{
1
2
(D2 − a2) − µg − iaRg|A|UB

}
(D2 − a2)ψ + iaRg|A|(D2UB)ψ, (A 7)

with boundary conditions

ψ = ψr = 0 on r = h, (A 8)
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where all terms are evaluated at τ + α. As the origin of time is immaterial here, the
above problem is identical to (4.6) provided we take R = |A|Rg and µ = µg . Thus the
stability properties of the basic flows (4.2) and (4.3) can be deduced from knowledge
of the stability properties of the wall-driven flow (4.1).
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